Sequences and Series
- Get link
- X
- Other Apps
Let's take a look at some interesting sequences and series problems.
1. (USAMTS) Evaluate the value of
$$S = \sqrt{1+\cfrac{1}{1^2}+\cfrac{1}{2^2}} + \sqrt{1+\cfrac{1}{2^2}+\cfrac{1}{3^2}} + ... + \sqrt{1+\cfrac{1}{1999^2}+\cfrac{1}{2000^2}}$$
Solution
Notice that $$1+\cfrac{1}{n^2}+\cfrac{1}{(n+1)^2} = \cfrac{n^4+2n^3+3n^2+2n+1}{n^2(n+1)^2} = \cfrac{n^2+n+1)^2}{n^2(n+1)^2} = \Bigg(1+\cfrac{1}{n(n+1)} \Bigg)^2$$
Thus, $$S= \Bigg(1+\cfrac{1}{1 \cdot 2} \Bigg) + \Bigg(1+\cfrac{1}{2 \cdot 3} \Bigg) + \Bigg(1+\cfrac{1}{3 \cdot 4} \Bigg) + ... + \Bigg(1+\cfrac{1}{1999 \cdot 2000} \Bigg)$$ $$= 1999 + \Bigg(1 - \cfrac{1}{2} \Bigg) + \Bigg(\cfrac{1}{2} - \cfrac{1}{3} \Bigg) + ... + \Bigg(\cfrac{1}{1999} - \cfrac{1}{2000} \Bigg) = 1999 + 1 - \cfrac{1}{2000} = \boxed{\cfrac{3,999,999}{2000}}$$
2. (HMMT) Find the value of
$$S = \cfrac{1}{3^2+1} + \cfrac{1}{4^2+2} + \cfrac{1}{5^2+3} + ...$$
Solution
For this problem, we can use partial fraction decomposition and try to find an alternate form for the expression $\cfrac{1}{(n+2)^2+n}$.
$$\cfrac{1}{(n+2)^2+n} = \cfrac{1}{n^2+5n+4} = \cfrac{1}{3} \Bigg(\cfrac{1}{n+1} - \cfrac{1}{n+4} \Bigg)$$
Hence, we can calculate the infinite sum as
$$S = \cfrac{1}{3} \Bigg( \cfrac{1}{2} - \cfrac{1}{5} + \cfrac{1}{3} - \cfrac{1}{6} + \cfrac{1}{4} - \cfrac{1}{7} + \cfrac{1}{5} - \cfrac{1}{8} + ... \Bigg) = \cfrac{1}{3} \Bigg( \cfrac{1}{2} + \cfrac{1}{3} + \cfrac{1}{4} \Bigg) = \boxed{\cfrac{13}{36}}$$
- Get link
- X
- Other Apps
Comments
Post a Comment